
本日の研究会内容	

2014/03/18 1:07dcase.jp

1/2 ���http://www.dcase.jp/study05.html

ホーム D-Caseとは D-Case委員会 活動案内 実施例

著書・論文紹介 D-Case Editor 参加申し込み リンク サイトマップ

　

活動案内

第5回D-Case研究会のご案内

日時：平成２６年３月１８日
場所：国立情報学研究所　12F会議室（1208）(注　神保町駅A8出口は工事中)
　　　　 プログラム予定

　　1　13:30 - 13:55　D-Caseのこれから
　　　　　　　　　　　　　松野裕（電通大）

　　2　13:55 - 14:20　D-CaseとSysMLによるISO26262準拠デザイン実験
　　　　　　　　　　　　　豊田学（日本IBM）、屋代眞（DEOSセンター）

　　3　14:20 - 14:45　DEOS要求マネジメント
　　　　　　　　　　　　　山本修一郎（名大）

　　4　14:45 - 15:10　Astah GSNについて
　　　　　　　　　　　　　平鍋健児、岩永寿来（チェンジビジョン）

　　　　休憩

　　5　15:20 - 15:45　Mobile Payment System を対象としたD-Case記述演習
　　　　　　　　　　　　　Mehnaz Seraj, Babatunde Ojetunde、
　　　　　　　　　　　　　高井利憲（奈良先端大）

活動案内

D-Case実証評価研究会

D-Case講習会

2014/03/18 1:07dcase.jp

2/2 ���http://www.dcase.jp/study05.html

Copyright © 2013 The University of Electro-Communications, Nagoya University All Rights Reserved.

　　6　15:45 - 16:10　D-Case駆動ソフト開発(DCDD)、およびD-Case実例紹介
　　　　　　　　　　　　　宇都宮浩之（デンソークリエイト）

　　7　16:10 - 16:35　D-Case in Agda
　　　　　　　　　　　　　武山誠（神奈川大）

　　8　16:35 - 17:00　DEOSコンソーシアムの効果
　　　　　　　　　　　　　所眞理雄（Sony CSL）

ページのトップへ戻る

D-‐Caseのこれから	

電気通信大学大学院	
情報システム学研究科	

松野裕	
matsuno@is.uec.ac.jp	

本発表の内容	

•  前半　DEOSシンポジウムの内容	
– D-‐Caseのこれまで	

•  後半　D-‐Case言語仕様の話	
– D-‐Caseパターン、モジュールの設計と実装	

D-‐Case導入の経緯	

2009年9月DEOS中間成果報告会	
各チームOS要素技術の	
高度・専門化のため、参加者への
遠隔監視システムの	
ディペンダビリティの説明が困難
だった	

木下チームが調査していた	
アシュアランスケース	
(Assurance	 Cases)	
を拡張してD-‐Caseを提案、	
遠隔監視デモシステム	
に適用	

遠隔監視システムのD-‐Case	

企業内、企業間で共通してディペンダビリティ
を合意するための形式としてD-‐Caseに期待	
する（公開討論参加企業から）	

開発、運用を通じてD-‐Caseをシステムの
ディペンダビリティ電子情報として扱う	
アーキテクチャが必要（DEOSの議論）	

アシュアランスケース、セーフティケース	
(Assurance	 Cases,	 Safety	 Cases)	

•  システムが与えられた適用先と環境で、十分に	
ディペンダブル（安全）であることを提供する構造化
された証拠ドキュメント	

ゴール	 	

 	

 	

 	

 	 エビデンス	

エビデンス	

エビデンス	

 	

議論の構造	

例:	 システムは安全である	

例:	 FTA(Fault	 Tree	 Analysis)	
の結果 など	

イギリスを中心に、安全性規格許認可のために使われている	

アシュアランスケース、セーフティケース 
(Assurance	 Cases,	 Safety	 Cases)	

システム
は安全で

ある	

ハザードごと
に議論する	

ハザードAに
対処できる	

ハザード	
リスト	
A,B	

ハザードBに
対処できる	

テスト
結果	

テスト
結果	

前提	

ゴール	

戦略	

証拠(エビデンス)	

きちんと前提（仮定）を	
共有した上で	

議論すべき	
命題を設定し	

議論の流れ	
（ゴールからサブゴール）	
を確認し	

議論を展開し	

確かな証拠	
によって最終的に	
ゴールを支える	

当たり前の	
科学的思考	
を実践する	
	
不完全さを確認し、	
システムのディペンダビリティ	
を合意していく	

GSN（Goal	 Structuring	 NotaHon）で表記	

D-‐Caseの目指した方向性	

銀行	 開発会社	

要件定義フェーズ	 開発(コンフィグ)	
フェーズ	

テスト	
フェーズ	

運用	
フェーズ	

銀行監視カメラ
ディペンダビリティ

ゴール	

銀行監視カメラ	
ディペンダビリティ	

ゴール	

銀行監視カメラ	
ディペンダビリティ	

ゴール	

銀行監視カメラ	
ディペンダビリティ	

ゴール	
…	 …	

ステークホルダ	

運用会社	

DEOS	
プロセス

へ	

研究成果	

ディペンダビリティ	
合意形成	

開発と運用を通じた
ディペンダビリティ	

電子情報	

D-‐RE、D-‐Scriptとの連携基礎実装	

©倉光研究室	D-‐Case	 Editor	
ベンチマークツール、	
モデリングツール	
と連携した世界初の本格的な	
ツールの仕様策定、開発	

松野、山本著 実践D-‐Case	
世界初のソフトウエア工学	
の知見を生かした、一般企業向け	
D-‐Case/アシュアランスケース	
記述手法	

トップレベル	
の研究へ	

	 実証実験	

2014/02/24 11:33dcase.jp

1/3 ���http://www.dcase.jp/example.html

ホーム D-Caseとは D-Case委員会 活動案内 実施例

著書・論文紹介 FAQ 参加申し込み リンク サイトマップ

　

D-Case活用事例

エンジン制御開発への適用

　　講演者　石崎　直哉　（トヨタ）　　　PDF

D-Case活用事例：ETロボコンへの適用

　　講演者　伊東　敦　 (富士ゼロックス) 　PDF

D-Caseを用いた要件定義プロセス

　　講演者　㈱デンソークリエイト　　　PDF

　　　ETロボコン（作成中）　ETロボコン（ゴール分析）
　　　ツールA TCLの評価　ツールA ツール認定方法
　　　リッチピクチャー

入退出管理システムのディペンダビリティ設計によるD-case研修

実施例

トヨタ自動車

富士ゼロックス

デンソークリエイト

安川情報エンべデッド

サイバー創研

チェンジビジョン

産総研

DEOSセンター

DEOSセンター

2014/02/24 11:33dcase.jp

2/3 ���http://www.dcase.jp/example.html

　　講演者　安川情報エンベデッド㈱　　　PDF

D-CaseによるLANアプリケーションのディペンダブル設計

　　講演者　㈱サイバー創研　　　　　　　 PDF

D-CaseとSysML/UML連携の実証実験

　　講演者　山本光洋 (チェンジビジョン)　　PDF

D-Caseを使ったロボットのディペンダビリティの保証

　　講演者　加賀美聡 (産総研)　　PDF

DEOSプロジェクト最新動向／SysMLとD-Caseの連携

　　講演者　屋代眞 (DEOSセンター)　豊田学　（日本IBM）　PDF

DEOSプロジェクト最新動向とD-Case事例紹介

　　講演者　屋代眞 (DEOSセンター)　PDF

D-Caseを用いた分散システムのモニタリング

　　講演者　中澤仁 (慶応大学)　PDF

D-Caseレポジトリとステークホルダ

　　講演者　志田駿介 (横浜国立大学)　PDF

D-Scriptを用いたD-Caseと実行環境の同期

　　講演者　岡本悠希 (横浜国立大学)　PDF

System Assurance For Smart House

　　講演者　Khana Chindamaikul, Uematsu Yusuke, Jun Komeda (奈良先端大)
　PDF

慶応大学

横浜国立大学

横浜国立大学

奈良先端大

奈良先端大

奈良先端大

2014/02/24 11:33dcase.jp

2/3 ���http://www.dcase.jp/example.html

　　講演者　安川情報エンベデッド㈱　　　PDF

D-CaseによるLANアプリケーションのディペンダブル設計

　　講演者　㈱サイバー創研　　　　　　　 PDF

D-CaseとSysML/UML連携の実証実験

　　講演者　山本光洋 (チェンジビジョン)　　PDF

D-Caseを使ったロボットのディペンダビリティの保証

　　講演者　加賀美聡 (産総研)　　PDF

DEOSプロジェクト最新動向／SysMLとD-Caseの連携

　　講演者　屋代眞 (DEOSセンター)　豊田学　（日本IBM）　PDF

DEOSプロジェクト最新動向とD-Case事例紹介

　　講演者　屋代眞 (DEOSセンター)　PDF

D-Caseを用いた分散システムのモニタリング

　　講演者　中澤仁 (慶応大学)　PDF

D-Caseレポジトリとステークホルダ

　　講演者　志田駿介 (横浜国立大学)　PDF

D-Scriptを用いたD-Caseと実行環境の同期

　　講演者　岡本悠希 (横浜国立大学)　PDF

System Assurance For Smart House

　　講演者　Khana Chindamaikul, Uematsu Yusuke, Jun Komeda (奈良先端大)
　PDF

慶応大学

横浜国立大学

横浜国立大学

奈良先端大

奈良先端大

奈良先端大

www.dcase.jp	

国際標準化	
OMG	 Dependability	 Assurance	
Framework	 for	 Safety	 SensiHve	
Consumer	 Device	 (SSCD)	
•  自動車などの消費者機械の	

ディペンダビリティを日本流の	
「すり合わせ」により保証する	
フレームワーク	
–  DEOSプロセスの考えが反映	

•  トヨタ,電通大、産総研,富士通
を中心に活動中(2010~)	

•  IPA	 WGで活動、2013.3	 RFP,	
2013.11	 IniHal	 Submission.	 	

2013.11	 ET2013でプレスリリース	

Open	 Group	 Open	 Dependability	
through	 Assuredness	 (O-‐DA)	
•  エンタープライズ	

アーキテクチャ・プロセス
TOGAFへのDEOSプロセスの
導入	

•  Open	 Group	 Real	 Time	 &	 	
Embedded	 System分科会に	
参加(2011.3)	

•  2013.8	 v.1.0発行	

2013.8	 Open	 Group	 Conference	
でプレスリリース	
日経コンピュータ2013.11.28号で紹介	

普及活動	

•  研究会(名大、電通大主催)	
–  名古屋、東京、京都で４回開催、	

１３０名参加	
•  講習会	

–  名古屋、JAXA、FX、横河電機で	
５回開催、９０名参加	

•  企業とのD-‐Caseセミナー、	
展示会　２件	

•  APCOSEC2013国際会議(慶応大)
などでのD-‐Caseセッション開催	

•  www.dcase.jp　	
–  半年で５０００件アクセス	

•  D-‐Case	 Editor公開、	
オープンソース化	
–  数十件程度の利用報告	
–  数百件のダウンロード	

富士ゼロックス社内の活動	
•  ２０１３年度 講習会など	

３回、計３７名参加	
•  利用事例	

–  ETロボコン提出モデル　ET2012、
ET2013（ETロボコン参加者）	

–  製品開発現場における技術選択
（コントローラSW開発部門）	

–  研究プロトタイプを対象にした
HAYST法によるテスト設計のため
の因子/水準の抽出	
（研究開発部門）	

第４回D-‐Case研究会の様子(2013.10.22,	 京都)	

D-‐Caseの課題	
Dependability概念規定	
→	 DEOSプロセス	

D-‐Case言語仕様策定、	
D-‐Caseシステム連携基礎、	
ツールオープンソース公開	

研究会、講習会、教材開発	

D-‐Case記述、評価、	
再利用、Confidence,	

システムライフサイクル
への埋め込み	 ,	 …	

D-‐Case記述法開発	

本質的な課題	

D-‐Case研究会、部会において、企業、研究機関が連携して	
(部分的)解決を試み、可能な範囲で企業現場に適用し、	
結果を研究にフィードバックしていく	

D-‐Caseの課題	

•  D-‐Caseのスケーラビリティ	
– D-‐Caseはすぐに巨大になる→	
D-‐Caseのモジュール化	

•  D-‐Caseの再利用性	
– D-‐Caseをスクラッチから書くのは大変	
– 有用なD-‐Caseの部分をパターン化し再利用する	

•  …	

GSNパターン	

•  GSNの再利用性を高めるためにGSNパターン
が提案されている	

Fig. 2. Main constructs of GSN modules [14]

Fig. 3. An example of GSN patterns [8]

with types have been implemented in D-Case Editor. However,
only global parameters among all GSN trees and very local
parameters within a node can be used. In this paper the
function is extended to have local parameters having sub trees
as the scopes.

Our design choices are as follows. Parameters can be
defined in a goal. The scope of the parameters are the sub tree
of the goal. Parameters have five kinds of types: int, double,
string, enum, and raw types. Raw type means types other than
int, double, string, and enum.

In Figure 4, the word “air plane” is a value of a parameter
“System” of type enum. Figure 7 is a snapshot of setting

window of the “System” parameter. In this case “System”
parameter is defined to have enum types with possible values
of “car”, “air plane”, and “space shuttle”.

D-Case Editor has a pattern library. A user can use existing
patterns and user-defined patterns from the library. When using
a pattern, the user selects a pattern from the library with setting
values of parameters defined in the top goal of the pattern.

IV. FURTHER ISSUES

As discussed in previous sections, there have been some
ambiguity in [14]. Here we consider traversal of parameters
information across modules. In Figure 4, assume that a pa-

サブゴール	
の複製	
(MulHplicity)	

サブゴール	
の選択	
(Choice)	

パタメータ	

GSNパターン	

GSNパターン	

•  ループ構造	

constructed to be as flexible as possible such that they are applicable to a wide range of systems. There are a wide
range of different development processes used on different projects, and it is important that the argument pattern
may be instantiated no matter what development process is used. The structure of the pattern is therefore based upon
a generalized ‘tier’ model of development such as that proposed in reference 10. Each tier corresponds to one level
of decomposition of the design. The number of tiers of development may be different for different software systems,
but the general safety considerations at each tier are unchanged. In addition, different parts of the design of any
software system may be decomposed over a different number of tiers. Note that the term ‘tier’ is used principally to
avoid the potential confusion of overloading the term ‘level’.

Figure 4 - The structure of the software contribution safety argument pattern

It should be noted when instantiating the pattern shown in Figure 4 that {tier n}, and {tier n+1} etc. must be
instantiated with the names of the relevant tier as appropriate for the target system (e.g. class design, high level
design, etc.). The term DSSR refers to derived software safety requirements. These are the set of safety
requirements which the software must satisfy at each tier. In the pattern the term DSSRn is used to refer to a DSSR
at tier n, and should be instantiated with the DSSR itself or a unique identifier for the DSSR.

The starting point for this argument pattern is to make a safety claim relating to each of the potential software
contributions identified at the high level of the argument. To make a compelling safety argument for the software, it
is important for each contribution that all the ways in which errors may be introduced into the software which could
lead to that contribution are considered. At each tier in the development of the software, it is necessary to address

R.	 Hawkins	 et	 al	 A	 SystemaHc	 Approach	 for	 Developing	 Sobware	 Safety	 Arguments,	
ISSC2009	 ループカウンタ	

アシュアランスケース/GSNの課題	

•  GSN,	 GSNパターンの形式的な定義が定まっ
ていない	
– 実装したツールがまだない	
– 例えば、パラメータのスコープなどが定義されて

ない	
•  関数型言語の形式を利用すると容易なので

はないか	
	
•  GSN,	 GSNパターンを形式化、実装	

GSNの構造化	

(G4,	 S2,	 ((G5,	 E2),(G6,	 ◇)),C2)	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

structured definition of GSN terms first appeared in [13].
Definition 1 (GSN term T)

T ::= ♦ | (g, ♦) | (g, e) | (g, st, (T1, . . . , Tn))

♦ implies an empty GSN term. (g, ♦) is a GSN term of the top
goal g with no supporting argument. (g, e) is a GSN term whose
top goal g is supported by a direct evidence e. (g, st, (T1, . . . , Tn))
is a GSN term with top goal g which is supported by sub trees
T1, . . . Tn via strategy st. This definition normalizes current GSN
definitions in several way. For example, in the GSN Commu-
nity Standard [6], strategy nodes can be omitted among goal
nodes, and multiple strategies can be connected from the same
goal. These node links can be incorporated into our definition by
adding a few other nodes (Figure. 4). Also, we add sibling order
in sub goals of a goal as in [3].

Fig. 4 Normalization of GSN Link

3.2 GSN Patterns
We formalize the following construct of GSN patterns: param-

eterized expressions, multiplicity, choice, and loop.
In [13], Matsuno and Taguchi introduced types and define the

scope of variables appeared in expressions. These two are not
new and fairly basic notions in programming languages. How-
ever, the current GSN [2] neither incorporates types nor provides
the precise account of the scope of variables. As explained in
Section 2.2, the intended meaning of the parameterized expres-
sion {System X} in Figure 2 is to instantiate the variable X by
some particular instance which belongs to the System class (or
type). We believe that introducing types and giving a precise ac-
count of the scope of variables will contribute to avoid misuses of
parameterized expressions and to detect errors in early stages. For
example, we can automatically avoid mis-placement of variables
by type checking. In Figure 2, if a user instantiates X with e.g.,
“Railway hazards”, then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-placement.
If the scoping rules are not precisely defined, we cannot figure
out where variables in a node are declared in the first place.

We introduce parameter context as a sub-class of context node
of the form [x : τ = v] where x is a parameter of type τ to which
a value v is assigned (we use x, y, z, . . . for parameters and v for

values). Parameter context is attached to a goal. In Figure 5, a
parameter x is defined in parameter context C1. x can be used in
the goal G1 and its sub-trees. “x” is defined as a parameter of type
string, and assigned a value “car”. In current implementation, a
parameter can be used in GSN nodes as “{x} is dependable” where
parameters are enclosed by “{}.” In D-Case Editor, if a parameter
is assigned a value, then the occurrence of the parameter in the
scope is replaced with the value such as “{car} is dependable.”
Currently, types τ is defined as follows.

τ ::= int | double | string | enum | raw,

where raw types mean other than int, double, string, and enum
types. Also, the set of values includes ⊥ for unassigned param-
eters. In [6], node “uninstantiated” is attached to a goal node to
indicate a parameter is unassigned in the goal node. In our for-
malization, we use ⊥ for unassigned parameters.

Fig. 5 An Example of Parameter Context

Next, we define choice constructs. Following [3], we regard
the semantics of choice construct as follows. Given an integer
k within the range, a choice construct is instantiated with k sub
GSN terms (we use i, j, k, . . . for integers). For example, if a
choice construct has 4 sub GSN terms, and the user chooses 2
for k, then the choice construct is instantiated with the first and
second sub GSN terms.

Third, we define multiplicity constructs. Given an integer k
within the range, a multiplicity construct is instantiated with k
copies of a GSN term.

Definition 2 states the syntax of GSN pattern.
Definition 2 (GSN pattern P)

d ::= ϵ | [x : τ = v]

P ::= α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (P1, . . . , Pn), d)

| (g, st, c[i, j](P1, . . . , Pn), d)

| (g, st,m[i, j](P), d) | µα.P

d is parameter context. Without loss of generality, we assume
that at most one parameter can be defined in one parameter con-
text. We omit d if d is ϵ, i.e., no parameter is defined in the goal.
α(also we use β, γ, . . .) is variable for patterns which is used for
loop constructs. (g, st, c[i, j](P1, . . . , Pn), d) is choice construct
where [i, j] is the range of pattern instantiation. The user can

3

パターンの定義	

•  パラメータにスコープ、型を導入	

SILのs
スコープ	

Availability
のスコープs

Definition of
Availability	

Definition of
SIL	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

structured definition of GSN terms first appeared in [13].
Definition 1 (GSN term T)

T ::= ♦ | (g, ♦) | (g, e) | (g, st, (T1, . . . , Tn))

♦ implies an empty GSN term. (g, ♦) is a GSN term of the top
goal g with no supporting argument. (g, e) is a GSN term whose
top goal g is supported by a direct evidence e. (g, st, (T1, . . . , Tn))
is a GSN term with top goal g which is supported by sub trees
T1, . . . Tn via strategy st. This definition normalizes current GSN
definitions in several way. For example, in the GSN Commu-
nity Standard [6], strategy nodes can be omitted among goal
nodes, and multiple strategies can be connected from the same
goal. These node links can be incorporated into our definition by
adding a few other nodes (Figure. 4). Also, we add sibling order
in sub goals of a goal as in [3].

Fig. 4 Normalization of GSN Link

3.2 GSN Patterns
We formalize the following construct of GSN patterns: param-

eterized expressions, multiplicity, choice, and loop.
In [13], Matsuno and Taguchi introduced types and define the

scope of variables appeared in expressions. These two are not
new and fairly basic notions in programming languages. How-
ever, the current GSN [2] neither incorporates types nor provides
the precise account of the scope of variables. As explained in
Section 2.2, the intended meaning of the parameterized expres-
sion {System X} in Figure 2 is to instantiate the variable X by
some particular instance which belongs to the System class (or
type). We believe that introducing types and giving a precise ac-
count of the scope of variables will contribute to avoid misuses of
parameterized expressions and to detect errors in early stages. For
example, we can automatically avoid mis-placement of variables
by type checking. In Figure 2, if a user instantiates X with e.g.,
“Railway hazards”, then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-placement.
If the scoping rules are not precisely defined, we cannot figure
out where variables in a node are declared in the first place.

We introduce parameter context as a sub-class of context node
of the form [x : τ = v] where x is a parameter of type τ to which
a value v is assigned (we use x, y, z, . . . for parameters and v for

values). Parameter context is attached to a goal. In Figure 5, a
parameter x is defined in parameter context C1. x can be used in
the goal G1 and its sub-trees. “x” is defined as a parameter of type
string, and assigned a value “car”. In current implementation, a
parameter can be used in GSN nodes as “{x} is dependable” where
parameters are enclosed by “{}.” In D-Case Editor, if a parameter
is assigned a value, then the occurrence of the parameter in the
scope is replaced with the value such as “{car} is dependable.”
Currently, types τ is defined as follows.

τ ::= int | double | string | enum | raw,

where raw types mean other than int, double, string, and enum
types. Also, the set of values includes ⊥ for unassigned param-
eters. In [6], node “uninstantiated” is attached to a goal node to
indicate a parameter is unassigned in the goal node. In our for-
malization, we use ⊥ for unassigned parameters.

Fig. 5 An Example of Parameter Context

Next, we define choice constructs. Following [3], we regard
the semantics of choice construct as follows. Given an integer
k within the range, a choice construct is instantiated with k sub
GSN terms (we use i, j, k, . . . for integers). For example, if a
choice construct has 4 sub GSN terms, and the user chooses 2
for k, then the choice construct is instantiated with the first and
second sub GSN terms.

Third, we define multiplicity constructs. Given an integer k
within the range, a multiplicity construct is instantiated with k
copies of a GSN term.

Definition 2 states the syntax of GSN pattern.
Definition 2 (GSN pattern P)

d ::= ϵ | [x : τ = v]

P ::= α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (P1, . . . , Pn), d)

| (g, st, c[i, j](P1, . . . , Pn), d)

| (g, st,m[i, j](P), d) | µα.P

d is parameter context. Without loss of generality, we assume
that at most one parameter can be defined in one parameter con-
text. We omit d if d is ϵ, i.e., no parameter is defined in the goal.
α(also we use β, γ, . . .) is variable for patterns which is used for
loop constructs. (g, st, c[i, j](P1, . . . , Pn), d) is choice construct
where [i, j] is the range of pattern instantiation. The user can

3

パラメタの型	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

structured definition of GSN terms first appeared in [13].
Definition 1 (GSN term T)

T ::= ♦ | (g, ♦) | (g, e) | (g, st, (T1, . . . , Tn))

♦ implies an empty GSN term. (g, ♦) is a GSN term of the top
goal g with no supporting argument. (g, e) is a GSN term whose
top goal g is supported by a direct evidence e. (g, st, (T1, . . . , Tn))
is a GSN term with top goal g which is supported by sub trees
T1, . . . Tn via strategy st. This definition normalizes current GSN
definitions in several way. For example, in the GSN Commu-
nity Standard [6], strategy nodes can be omitted among goal
nodes, and multiple strategies can be connected from the same
goal. These node links can be incorporated into our definition by
adding a few other nodes (Figure. 4). Also, we add sibling order
in sub goals of a goal as in [3].

Fig. 4 Normalization of GSN Link

3.2 GSN Patterns
We formalize the following construct of GSN patterns: param-

eterized expressions, multiplicity, choice, and loop.
In [13], Matsuno and Taguchi introduced types and define the

scope of variables appeared in expressions. These two are not
new and fairly basic notions in programming languages. How-
ever, the current GSN [2] neither incorporates types nor provides
the precise account of the scope of variables. As explained in
Section 2.2, the intended meaning of the parameterized expres-
sion {System X} in Figure 2 is to instantiate the variable X by
some particular instance which belongs to the System class (or
type). We believe that introducing types and giving a precise ac-
count of the scope of variables will contribute to avoid misuses of
parameterized expressions and to detect errors in early stages. For
example, we can automatically avoid mis-placement of variables
by type checking. In Figure 2, if a user instantiates X with e.g.,
“Railway hazards”, then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-placement.
If the scoping rules are not precisely defined, we cannot figure
out where variables in a node are declared in the first place.

We introduce parameter context as a sub-class of context node
of the form [x : τ = v] where x is a parameter of type τ to which
a value v is assigned (we use x, y, z, . . . for parameters and v for

values). Parameter context is attached to a goal. In Figure 5, a
parameter x is defined in parameter context C1. x can be used in
the goal G1 and its sub-trees. “x” is defined as a parameter of type
string, and assigned a value “car”. In current implementation, a
parameter can be used in GSN nodes as “{x} is dependable” where
parameters are enclosed by “{}.” In D-Case Editor, if a parameter
is assigned a value, then the occurrence of the parameter in the
scope is replaced with the value such as “{car} is dependable.”
Currently, types τ is defined as follows.

τ ::= int | double | string | enum | raw,

where raw types mean other than int, double, string, and enum
types. Also, the set of values includes ⊥ for unassigned param-
eters. In [6], node “uninstantiated” is attached to a goal node to
indicate a parameter is unassigned in the goal node. In our for-
malization, we use ⊥ for unassigned parameters.

Fig. 5 An Example of Parameter Context

Next, we define choice constructs. Following [3], we regard
the semantics of choice construct as follows. Given an integer
k within the range, a choice construct is instantiated with k sub
GSN terms (we use i, j, k, . . . for integers). For example, if a
choice construct has 4 sub GSN terms, and the user chooses 2
for k, then the choice construct is instantiated with the first and
second sub GSN terms.

Third, we define multiplicity constructs. Given an integer k
within the range, a multiplicity construct is instantiated with k
copies of a GSN term.

Definition 2 states the syntax of GSN pattern.
Definition 2 (GSN pattern P)

d ::= ϵ | [x : τ = v]

P ::= α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (P1, . . . , Pn), d)

| (g, st, c[i, j](P1, . . . , Pn), d)

| (g, st,m[i, j](P), d) | µα.P

d is parameter context. Without loss of generality, we assume
that at most one parameter can be defined in one parameter con-
text. We omit d if d is ϵ, i.e., no parameter is defined in the goal.
α(also we use β, γ, . . .) is variable for patterns which is used for
loop constructs. (g, st, c[i, j](P1, . . . , Pn), d) is choice construct
where [i, j] is the range of pattern instantiation. The user can

3

パターンの定義	

•  複製、選択の導入	

複製	

２	１	 ３	
２	１	

選択	

パターンの定義	

•  ループの導入	

α	

α	

α	

μα.T	 -‐>	 T[μα.T	 /	 α]	

GSNパターンの定義	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

structured definition of GSN terms first appeared in [13].
Definition 1 (GSN term T)

T ::= ♦ | (g, ♦) | (g, e) | (g, st, (T1, . . . , Tn))

♦ implies an empty GSN term. (g, ♦) is a GSN term of the top
goal g with no supporting argument. (g, e) is a GSN term whose
top goal g is supported by a direct evidence e. (g, st, (T1, . . . , Tn))
is a GSN term with top goal g which is supported by sub trees
T1, . . . Tn via strategy st. This definition normalizes current GSN
definitions in several way. For example, in the GSN Commu-
nity Standard [6], strategy nodes can be omitted among goal
nodes, and multiple strategies can be connected from the same
goal. These node links can be incorporated into our definition by
adding a few other nodes (Figure. 4). Also, we add sibling order
in sub goals of a goal as in [3].

Fig. 4 Normalization of GSN Link

3.2 GSN Patterns
We formalize the following construct of GSN patterns: param-

eterized expressions, multiplicity, choice, and loop.
In [13], Matsuno and Taguchi introduced types and define the

scope of variables appeared in expressions. These two are not
new and fairly basic notions in programming languages. How-
ever, the current GSN [2] neither incorporates types nor provides
the precise account of the scope of variables. As explained in
Section 2.2, the intended meaning of the parameterized expres-
sion {System X} in Figure 2 is to instantiate the variable X by
some particular instance which belongs to the System class (or
type). We believe that introducing types and giving a precise ac-
count of the scope of variables will contribute to avoid misuses of
parameterized expressions and to detect errors in early stages. For
example, we can automatically avoid mis-placement of variables
by type checking. In Figure 2, if a user instantiates X with e.g.,
“Railway hazards”, then the argument does not make sense. It is
fairly obvious that type checking prevents such a mis-placement.
If the scoping rules are not precisely defined, we cannot figure
out where variables in a node are declared in the first place.

We introduce parameter context as a sub-class of context node
of the form [x : τ = v] where x is a parameter of type τ to which
a value v is assigned (we use x, y, z, . . . for parameters and v for

values). Parameter context is attached to a goal. In Figure 5, a
parameter x is defined in parameter context C1. x can be used in
the goal G1 and its sub-trees. “x” is defined as a parameter of type
string, and assigned a value “car”. In current implementation, a
parameter can be used in GSN nodes as “{x} is dependable” where
parameters are enclosed by “{}.” In D-Case Editor, if a parameter
is assigned a value, then the occurrence of the parameter in the
scope is replaced with the value such as “{car} is dependable.”
Currently, types τ is defined as follows.

τ ::= int | double | string | enum | raw,

where raw types mean other than int, double, string, and enum
types. Also, the set of values includes ⊥ for unassigned param-
eters. In [6], node “uninstantiated” is attached to a goal node to
indicate a parameter is unassigned in the goal node. In our for-
malization, we use ⊥ for unassigned parameters.

Fig. 5 An Example of Parameter Context

Next, we define choice constructs. Following [3], we regard
the semantics of choice construct as follows. Given an integer
k within the range, a choice construct is instantiated with k sub
GSN terms (we use i, j, k, . . . for integers). For example, if a
choice construct has 4 sub GSN terms, and the user chooses 2
for k, then the choice construct is instantiated with the first and
second sub GSN terms.

Third, we define multiplicity constructs. Given an integer k
within the range, a multiplicity construct is instantiated with k
copies of a GSN term.

Definition 2 states the syntax of GSN pattern.
Definition 2 (GSN pattern P)

d ::= ϵ | [x : τ = v]

P ::= α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (P1, . . . , Pn), d)

| (g, st, c[i, j](P1, . . . , Pn), d)

| (g, st,m[i, j](P), d) | µα.P

d is parameter context. Without loss of generality, we assume
that at most one parameter can be defined in one parameter con-
text. We omit d if d is ϵ, i.e., no parameter is defined in the goal.
α(also we use β, γ, . . .) is variable for patterns which is used for
loop constructs. (g, st, c[i, j](P1, . . . , Pn), d) is choice construct
where [i, j] is the range of pattern instantiation. The user can

3

1からk	 (i	 <=	 k	 <=	 j)	
番目のサブパターンを	
選択 	

k	 (i	 <=	 k	 <=	 j)	
個複製	

ループ	例　g	 =	 “{システム}はディペンダブルである”	
{システム}はパラメータ	

GSNパターンのインスタンス化	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

choose k(1 ≤ i ≤ k ≤ j ≤ n) patterns from P1, . . . , Pn. Multiplic-
ity construct is represented by (g, st,m[i, j](P), d), where [i, j] is
the range of pattern instantiation. The user selects the number of
multiplicity k(1 ≤ i ≤ k ≤ j), and the construct is instantiated
with k copies of P. µα.P represents loop construct. α is a binding
variable within the body P. α possibly appears as sub terms of
P such as P1 = (g1, st1, (α, (g1, e1))). We say P is closed if there
is no free occurrence of α within the body of P (note that P1 is
not closed.) When instantiation, the user can substitute α with
P itself. This represents unfolding of loop construct as shown in
Figure 3.

3.3 Pattern Instantiation
Pattern Instantiation is defined as a binary relation of the form

P1 −→ P2 (Figure 6).

(g, ♦, [x : τ = ⊥])
v−→ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥])
v−→ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥])
v−→

(g[v/x], st[v/x],(P1[v/x], . . . , Pn[v/x]), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d)
k−→ (g, st, (P1, . . . , Pk), d)

(g, st,m[i, j](P), d)
k−→ (g, st, (P, . . . , P), d) (P repeats k times)

µα.P
µ−→ P[µα.P/α]

µα.P
♦−→ ♦

Fig. 6 Pattern Instantiation Relation P1 → P2

The first three relations are instantiation by parameter assign-
ment. For example, in (g, ♦, [x : τ = ⊥]), if the user select value
v for x (v should have the same type of x. Current D-Case Ed-
itor only accepts a value of the same type for the parameter),
then the pattern is instantiated with (g[v/x], ♦, [x : τ = v]), with
all occurrences of x in g is replaced with v. The user-selected
value v is annotated to the arrow as

v−→. This corresponds to non-
deterministic evaluation in programming languages. The fourth
relation is for choice construct instantiation. The user chooses the
number of sub GSN terms k within the range, and the construct
is instantiated by k sub GSN terms. Similarly, the fifth relation
is for multiplicity construct instantiation. If the user selects the
multiplicity number k, the construct is instantiated with k copies
of P as sub GSN terms of the goal g. The last two relations are for
loop constructs. If the user wants to unfold the loop constructs,
the occurrence of α within the body P is replaced with P it self.
Otherwise (the last rule), the loop construct is replaced with ♦.
Note that a loop construct can be unfolded many times as the user
wants.

Next, we generalize the pattern instantiation relation by envi-
ronmental context E. An environmental context is a pattern with
possibly multiple holes []. For example, if E = (g1, st, ([], g2), d),
then E[g3] = (g1, st, (g3, g2), d).

Definition 3 (Environmental Context E)

Π(P) =

case P of

(g, ♦, ϵ) =⇒ (g, ♦, ϵ)

(g, e, ϵ) =⇒ (g, e, ϵ)

(g, st, (P1, . . . , Pn), ϵ) =⇒ (g, st, (Π(P1), . . . ,Π(Pn)), ϵ)

(g, ♦, [x : τ = ⊥]) =⇒ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥]) =⇒ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥]) =⇒
(g[v/x], st[v/x], (Π(P1[v/x]), . . . ,Π(Pn[v/x])), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d) =⇒ Π((g, st, (P1, . . . , Pk), d))

(g, st,m[i, j](P), d) =⇒ Π((g, st, (P, . . . , P), d))

µα.P =⇒ Π(P[µα.P/α]) if u = µ

µα.P =⇒ ♦ if u = ♦

Fig. 7 Pattern Instantiation Algorithm

E ::= [] | α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (E1, . . . , En), d)

| (g, st, c[i, j](E1, . . . , En), d)

| (g, st,m[i, j](E), d) | µα.E

Using E, the pattern instantiation rules also include:

P1 −→ P2

E[P1] −→ E[P2].

The following definitions state the relation between a pattern
and its instances.

Definition 4 (elim(P)) elim(P) is a function that returns P′ in
which all parameter contexts are eliminated from P. For example,
if P = (g, e, [x : τ = v]), then elim(P) = (g, e).

Definition 5 (Normal Form) A pattern P is said to be nor-
mal form if and only if there does not exit P1 such that P −→ P1.

Definition 6 (Instances of a Pattern) Let P be a pattern in
which all parameters are unassigned. If

P −→∗ I

and I is a normal form, then elim(I) is an instance of P.

3.4 Pattern Instantiation Algorithm
Thanks to the programming language formalization, pattern

instantiation algorithm can be defined in a straight and recur-
sive way. We denote the algorithm as Π(P). In the algorithm,
u = v, k, µ, ♦ are user input. The algorithm is shown in Figure 7.
Note that v is other than ⊥ in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1 Let P be a closed GSN pattern. If

Π(P) = I,

then elim(I) is an instance of P.

4. Prototype Implementation
In [15], we reported a preliminary implementation of the pat-

tern instantiation function in D-Case Editor. Currently, we have

4

パターンとインスタンスの関係	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

choose k(1 ≤ i ≤ k ≤ j ≤ n) patterns from P1, . . . , Pn. Multiplic-
ity construct is represented by (g, st,m[i, j](P), d), where [i, j] is
the range of pattern instantiation. The user selects the number of
multiplicity k(1 ≤ i ≤ k ≤ j), and the construct is instantiated
with k copies of P. µα.P represents loop construct. α is a binding
variable within the body P. α possibly appears as sub terms of
P such as P1 = (g1, st1, (α, (g1, e1))). We say P is closed if there
is no free occurrence of α within the body of P (note that P1 is
not closed.) When instantiation, the user can substitute α with
P itself. This represents unfolding of loop construct as shown in
Figure 3.

3.3 Pattern Instantiation
Pattern Instantiation is defined as a binary relation of the form

P1 −→ P2 (Figure 6).

(g, ♦, [x : τ = ⊥])
v−→ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥])
v−→ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥])
v−→

(g[v/x], st[v/x],(P1[v/x], . . . , Pn[v/x]), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d)
k−→ (g, st, (P1, . . . , Pk), d)

(g, st,m[i, j](P), d)
k−→ (g, st, (P, . . . , P), d) (P repeats k times)

µα.P
µ−→ P[µα.P/α]

µα.P
♦−→ ♦

Fig. 6 Pattern Instantiation Relation P1 → P2

The first three relations are instantiation by parameter assign-
ment. For example, in (g, ♦, [x : τ = ⊥]), if the user select value
v for x (v should have the same type of x. Current D-Case Ed-
itor only accepts a value of the same type for the parameter),
then the pattern is instantiated with (g[v/x], ♦, [x : τ = v]), with
all occurrences of x in g is replaced with v. The user-selected
value v is annotated to the arrow as

v−→. This corresponds to non-
deterministic evaluation in programming languages. The fourth
relation is for choice construct instantiation. The user chooses the
number of sub GSN terms k within the range, and the construct
is instantiated by k sub GSN terms. Similarly, the fifth relation
is for multiplicity construct instantiation. If the user selects the
multiplicity number k, the construct is instantiated with k copies
of P as sub GSN terms of the goal g. The last two relations are for
loop constructs. If the user wants to unfold the loop constructs,
the occurrence of α within the body P is replaced with P it self.
Otherwise (the last rule), the loop construct is replaced with ♦.
Note that a loop construct can be unfolded many times as the user
wants.

Next, we generalize the pattern instantiation relation by envi-
ronmental context E. An environmental context is a pattern with
possibly multiple holes []. For example, if E = (g1, st, ([], g2), d),
then E[g3] = (g1, st, (g3, g2), d).

Definition 3 (Environmental Context E)

Π(P) =

case P of

(g, ♦, ϵ) =⇒ (g, ♦, ϵ)

(g, e, ϵ) =⇒ (g, e, ϵ)

(g, st, (P1, . . . , Pn), ϵ) =⇒ (g, st, (Π(P1), . . . ,Π(Pn)), ϵ)

(g, ♦, [x : τ = ⊥]) =⇒ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥]) =⇒ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥]) =⇒
(g[v/x], st[v/x], (Π(P1[v/x]), . . . ,Π(Pn[v/x])), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d) =⇒ Π((g, st, (P1, . . . , Pk), d))

(g, st,m[i, j](P), d) =⇒ Π((g, st, (P, . . . , P), d))

µα.P =⇒ Π(P[µα.P/α]) if u = µ

µα.P =⇒ ♦ if u = ♦

Fig. 7 Pattern Instantiation Algorithm

E ::= [] | α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (E1, . . . , En), d)

| (g, st, c[i, j](E1, . . . , En), d)

| (g, st,m[i, j](E), d) | µα.E

Using E, the pattern instantiation rules also include:

P1 −→ P2

E[P1] −→ E[P2].

The following definitions state the relation between a pattern
and its instances.

Definition 4 (elim(P)) elim(P) is a function that returns P′ in
which all parameter contexts are eliminated from P. For example,
if P = (g, e, [x : τ = v]), then elim(P) = (g, e).

Definition 5 (Normal Form) A pattern P is said to be nor-
mal form if and only if there does not exit P1 such that P −→ P1.

Definition 6 (Instances of a Pattern) Let P be a pattern in
which all parameters are unassigned. If

P −→∗ I

and I is a normal form, then elim(I) is an instance of P.

3.4 Pattern Instantiation Algorithm
Thanks to the programming language formalization, pattern

instantiation algorithm can be defined in a straight and recur-
sive way. We denote the algorithm as Π(P). In the algorithm,
u = v, k, µ, ♦ are user input. The algorithm is shown in Figure 7.
Note that v is other than ⊥ in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1 Let P be a closed GSN pattern. If

Π(P) = I,

then elim(I) is an instance of P.

4. Prototype Implementation
In [15], we reported a preliminary implementation of the pat-

tern instantiation function in D-Case Editor. Currently, we have

4

パターンインスタンス	
アルゴリズム	

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

choose k(1 ≤ i ≤ k ≤ j ≤ n) patterns from P1, . . . , Pn. Multiplic-
ity construct is represented by (g, st,m[i, j](P), d), where [i, j] is
the range of pattern instantiation. The user selects the number of
multiplicity k(1 ≤ i ≤ k ≤ j), and the construct is instantiated
with k copies of P. µα.P represents loop construct. α is a binding
variable within the body P. α possibly appears as sub terms of
P such as P1 = (g1, st1, (α, (g1, e1))). We say P is closed if there
is no free occurrence of α within the body of P (note that P1 is
not closed.) When instantiation, the user can substitute α with
P itself. This represents unfolding of loop construct as shown in
Figure 3.

3.3 Pattern Instantiation
Pattern Instantiation is defined as a binary relation of the form

P1 −→ P2 (Figure 6).

(g, ♦, [x : τ = ⊥])
v−→ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥])
v−→ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥])
v−→

(g[v/x], st[v/x],(P1[v/x], . . . , Pn[v/x]), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d)
k−→ (g, st, (P1, . . . , Pk), d)

(g, st,m[i, j](P), d)
k−→ (g, st, (P, . . . , P), d) (P repeats k times)

µα.P
µ−→ P[µα.P/α]

µα.P
♦−→ ♦

Fig. 6 Pattern Instantiation Relation P1 → P2

The first three relations are instantiation by parameter assign-
ment. For example, in (g, ♦, [x : τ = ⊥]), if the user select value
v for x (v should have the same type of x. Current D-Case Ed-
itor only accepts a value of the same type for the parameter),
then the pattern is instantiated with (g[v/x], ♦, [x : τ = v]), with
all occurrences of x in g is replaced with v. The user-selected
value v is annotated to the arrow as

v−→. This corresponds to non-
deterministic evaluation in programming languages. The fourth
relation is for choice construct instantiation. The user chooses the
number of sub GSN terms k within the range, and the construct
is instantiated by k sub GSN terms. Similarly, the fifth relation
is for multiplicity construct instantiation. If the user selects the
multiplicity number k, the construct is instantiated with k copies
of P as sub GSN terms of the goal g. The last two relations are for
loop constructs. If the user wants to unfold the loop constructs,
the occurrence of α within the body P is replaced with P it self.
Otherwise (the last rule), the loop construct is replaced with ♦.
Note that a loop construct can be unfolded many times as the user
wants.

Next, we generalize the pattern instantiation relation by envi-
ronmental context E. An environmental context is a pattern with
possibly multiple holes []. For example, if E = (g1, st, ([], g2), d),
then E[g3] = (g1, st, (g3, g2), d).

Definition 3 (Environmental Context E)

Π(P) =

case P of

(g, ♦, ϵ) =⇒ (g, ♦, ϵ)

(g, e, ϵ) =⇒ (g, e, ϵ)

(g, st, (P1, . . . , Pn), ϵ) =⇒ (g, st, (Π(P1), . . . ,Π(Pn)), ϵ)

(g, ♦, [x : τ = ⊥]) =⇒ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥]) =⇒ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥]) =⇒
(g[v/x], st[v/x], (Π(P1[v/x]), . . . ,Π(Pn[v/x])), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d) =⇒ Π((g, st, (P1, . . . , Pk), d))

(g, st,m[i, j](P), d) =⇒ Π((g, st, (P, . . . , P), d))

µα.P =⇒ Π(P[µα.P/α]) if u = µ

µα.P =⇒ ♦ if u = ♦

Fig. 7 Pattern Instantiation Algorithm

E ::= [] | α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (E1, . . . , En), d)

| (g, st, c[i, j](E1, . . . , En), d)

| (g, st,m[i, j](E), d) | µα.E

Using E, the pattern instantiation rules also include:

P1 −→ P2

E[P1] −→ E[P2].

The following definitions state the relation between a pattern
and its instances.

Definition 4 (elim(P)) elim(P) is a function that returns P′ in
which all parameter contexts are eliminated from P. For example,
if P = (g, e, [x : τ = v]), then elim(P) = (g, e).

Definition 5 (Normal Form) A pattern P is said to be nor-
mal form if and only if there does not exit P1 such that P −→ P1.

Definition 6 (Instances of a Pattern) Let P be a pattern in
which all parameters are unassigned. If

P −→∗ I

and I is a normal form, then elim(I) is an instance of P.

3.4 Pattern Instantiation Algorithm
Thanks to the programming language formalization, pattern

instantiation algorithm can be defined in a straight and recur-
sive way. We denote the algorithm as Π(P). In the algorithm,
u = v, k, µ, ♦ are user input. The algorithm is shown in Figure 7.
Note that v is other than ⊥ in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1 Let P be a closed GSN pattern. If

Π(P) = I,

then elim(I) is an instance of P.

4. Prototype Implementation
In [15], we reported a preliminary implementation of the pat-

tern instantiation function in D-Case Editor. Currently, we have

4

2013-3-(x): Manuscript for presentation at IPSJ-SIGPRO, 11 11 2013.

choose k(1 ≤ i ≤ k ≤ j ≤ n) patterns from P1, . . . , Pn. Multiplic-
ity construct is represented by (g, st,m[i, j](P), d), where [i, j] is
the range of pattern instantiation. The user selects the number of
multiplicity k(1 ≤ i ≤ k ≤ j), and the construct is instantiated
with k copies of P. µα.P represents loop construct. α is a binding
variable within the body P. α possibly appears as sub terms of
P such as P1 = (g1, st1, (α, (g1, e1))). We say P is closed if there
is no free occurrence of α within the body of P (note that P1 is
not closed.) When instantiation, the user can substitute α with
P itself. This represents unfolding of loop construct as shown in
Figure 3.

3.3 Pattern Instantiation
Pattern Instantiation is defined as a binary relation of the form

P1 −→ P2 (Figure 6).

(g, ♦, [x : τ = ⊥])
v−→ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥])
v−→ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥])
v−→

(g[v/x], st[v/x],(P1[v/x], . . . , Pn[v/x]), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d)
k−→ (g, st, (P1, . . . , Pk), d)

(g, st,m[i, j](P), d)
k−→ (g, st, (P, . . . , P), d) (P repeats k times)

µα.P
µ−→ P[µα.P/α]

µα.P
♦−→ ♦

Fig. 6 Pattern Instantiation Relation P1 → P2

The first three relations are instantiation by parameter assign-
ment. For example, in (g, ♦, [x : τ = ⊥]), if the user select value
v for x (v should have the same type of x. Current D-Case Ed-
itor only accepts a value of the same type for the parameter),
then the pattern is instantiated with (g[v/x], ♦, [x : τ = v]), with
all occurrences of x in g is replaced with v. The user-selected
value v is annotated to the arrow as

v−→. This corresponds to non-
deterministic evaluation in programming languages. The fourth
relation is for choice construct instantiation. The user chooses the
number of sub GSN terms k within the range, and the construct
is instantiated by k sub GSN terms. Similarly, the fifth relation
is for multiplicity construct instantiation. If the user selects the
multiplicity number k, the construct is instantiated with k copies
of P as sub GSN terms of the goal g. The last two relations are for
loop constructs. If the user wants to unfold the loop constructs,
the occurrence of α within the body P is replaced with P it self.
Otherwise (the last rule), the loop construct is replaced with ♦.
Note that a loop construct can be unfolded many times as the user
wants.

Next, we generalize the pattern instantiation relation by envi-
ronmental context E. An environmental context is a pattern with
possibly multiple holes []. For example, if E = (g1, st, ([], g2), d),
then E[g3] = (g1, st, (g3, g2), d).

Definition 3 (Environmental Context E)

Π(P) =

case P of

(g, ♦, ϵ) =⇒ (g, ♦, ϵ)

(g, e, ϵ) =⇒ (g, e, ϵ)

(g, st, (P1, . . . , Pn), ϵ) =⇒ (g, st, (Π(P1), . . . ,Π(Pn)), ϵ)

(g, ♦, [x : τ = ⊥]) =⇒ (g[v/x], ♦, [x : τ = v])

(g, e, [x : τ = ⊥]) =⇒ (g[v/x], e[v/x], [x : τ = v])

(g, st, (P1, . . . , Pn), [x : τ = ⊥]) =⇒
(g[v/x], st[v/x], (Π(P1[v/x]), . . . ,Π(Pn[v/x])), [x : τ = v])

(g, st, c[i, j](P1, . . . , Pn), d) =⇒ Π((g, st, (P1, . . . , Pk), d))

(g, st,m[i, j](P), d) =⇒ Π((g, st, (P, . . . , P), d))

µα.P =⇒ Π(P[µα.P/α]) if u = µ

µα.P =⇒ ♦ if u = ♦

Fig. 7 Pattern Instantiation Algorithm

E ::= [] | α | ♦ | (g, ♦, d)

| (g, e, d) | (g, st, (E1, . . . , En), d)

| (g, st, c[i, j](E1, . . . , En), d)

| (g, st,m[i, j](E), d) | µα.E

Using E, the pattern instantiation rules also include:

P1 −→ P2

E[P1] −→ E[P2].

The following definitions state the relation between a pattern
and its instances.

Definition 4 (elim(P)) elim(P) is a function that returns P′ in
which all parameter contexts are eliminated from P. For example,
if P = (g, e, [x : τ = v]), then elim(P) = (g, e).

Definition 5 (Normal Form) A pattern P is said to be nor-
mal form if and only if there does not exit P1 such that P −→ P1.

Definition 6 (Instances of a Pattern) Let P be a pattern in
which all parameters are unassigned. If

P −→∗ I

and I is a normal form, then elim(I) is an instance of P.

3.4 Pattern Instantiation Algorithm
Thanks to the programming language formalization, pattern

instantiation algorithm can be defined in a straight and recur-
sive way. We denote the algorithm as Π(P). In the algorithm,
u = v, k, µ, ♦ are user input. The algorithm is shown in Figure 7.
Note that v is other than ⊥ in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1 Let P be a closed GSN pattern. If

Π(P) = I,

then elim(I) is an instance of P.

4. Prototype Implementation
In [15], we reported a preliminary implementation of the pat-

tern instantiation function in D-Case Editor. Currently, we have

4

モジュール	

•  サブモジュール、モジュール参照の概念を導
入し、GSN定義を拡張	

•  モジュール間の依存関係をコントロールフ
ローグラフにより定義	

⇧(P) =

case P of
(g,⌃, ✏) =) (g,⌃, ✏)
(g, e, ✏) =) (g, e, ✏)

(g, st, (P1, . . . , Pn), ✏) =) (g, st, (⇧(P1), . . . ,⇧(Pn)), ✏)

(g,⌃, [x : ⌧ = ?]) =) (g[v/x],⌃, [x : ⌧ = v])

(g, e, [x : ⌧ = ?]) =) (g[v/x], e[v/x], [x : ⌧ = v])

(g, st, (P1, . . . , Pn), [x : ⌧ = ?]) =)
(g[v/x], st[v/x], (⇧(P1[v/x]), . . . ,⇧(Pn[v/x])), [x : ⌧ = v])

(g, st, c[i, j](P1, . . . , Pn), d) =) ⇧((g, st, (Ps1 , . . . , Psk), d))

(g, st,m[i, j](P), d) =) ⇧((g, st, (P, . . . , P), d))

µ↵.P =) ⇧(P [µ↵.P/↵]) if u = µ

µ↵.P =) ⌃ if u = ⌃

Figure 9. Pattern Instantiation Algorithm

Using E, the pattern instantiation rules also include:

P1 �! P2

E[P1] �! E[P2].

The following definitions state the relationship between a
pattern and its instances.

Definition 4 (elim(P)): elim(P) is a function that returns
P

0 in which all parameter contexts are eliminated from P .
For example, if P = (g, e, [x : ⌧ = v]), then elim(P) =
(g, e).

Definition 5 (Normal Form): A pattern P is said to be in
normal form if and only if there does not exit P1 such that
P �! P1.

Definition 6 (Instances of a Pattern): Let P be a pattern
in which all parameters are unassigned and I be a pattern.
elim(I) is an instance of P iff

P �!⇤ I

and I is a normal form.
Thanks to the functional programming language formal-

ization, a pattern instantiation algorithm can be defined in
both a straight and a recursive way. We denote the algorithm
as ⇧(P). In the algorithm, u = v, (k, (s1, . . . , sk)), k, µ,⌃
are user inputs. The algorithm is shown in Figure 9. Note
that v is other than ? in the algorithm.

The correctness of the algorithm is stated as follows.
Theorem 1: Let P be a closed GSN pattern. If

⇧(P) = I,

then elim(I) is an instance of P .
Proof Sketch
The proof is done by induction on the number of the

applications of ⇧.
Base Case
Cases of only one time application of ⇧(P) are P =
(g,⌃, ✏), (g, e, ✏), (g,⌃, [x : ⌧ = ?]), (g, e, [x : ⌧ = ?]), and
µ↵.P (u = ⌃). (g,⌃, ✏), (g, e, ✏) are already normal forms.
For other cases, there are corresponding pattern instantiation
relations such as

(g,⌃, [x : ⌧ = ?])
v�! (g[v/x],⌃, [x : ⌧ = v]),

and the righthand is a normal form. Therefore the theorem
holds.
Induction Step
Assume that the theorem holds for all cases in which the
number of application of ⇧ is less than or equal to k (1 k).

Let ⇧(P) = I by k + 1 applications of ⇧. For example,
consider the case P = (g, st, (P1, . . . , Pn), ✏):

⇧((g, st, (P1, . . . , Pn), ✏)) =) (g, st, (⇧(P1), . . . ,⇧(Pn)), ✏)

Let ⇧(P1) = I1, . . . ,⇧(Pn) = In. Since these are de-
rived by less than k applications of ⇧, there are corre-
sponding pattern instantiation relations: Pi �!⇤ Ii (1
i n), and I1, . . . , In are normal forms. Let E =
(g, st, ([]1, . . . , []n), ✏). Using the pattern instantiation rela-
tion for the environmental context, we obtain the follow-
ing relation: E[P1]1 . . . [Pn]n �!⇤ E[⇧(P1)]1 . . . [⇧(Pn)]n,
i.e., P �!⇤ I . I = (g, st, (I1, . . . , In), ✏) is a normal form.
Hence the theorem holds. Other cases are similar. ⇤

C. GSN Modules

For simplicity, we assume that a GSN module has one
GSN term. It is easy to have multiple GSN terms in a
module. We denote a GSN module by M , defined as follows.

M = (T, f)

where T is the GSN term and f is the flag to indicate
whether M is public (i.e., can be referred to from other
modules) or private (can not be referred to). The definition
of GSN term T is extended as follows.

g ::= (desc, f)

T ::= ⌃ | (g,⌃) | (g, e) | (g, st, (T1, . . . , Tn))

M | ref(M) | away(M.g)

A goal node g is extended to have the flag f to indicate
whether the goal is public or private. This corresponds to
public indicators in [12] (page 18). desc is the description
such as “System is dependable.” In the definition of GSN
term T , M represents a sub module inside a GSN term.
ref(M) represents a reference to other module. To refer to
a module M , the flag of M should be public. In [12], there
is no distinction between direct and indirect references. In
our development, we recognized the need for a distinction to
be able to introduce the notion of sub module. away(M.g)

B. GSN Module Implementation

In our implementation, modules are implemented as
Eclipse files.

Let Mdependability = (T1, f1) and Msecurity = (T2, f2),
where

T1 = (g1, st1, ((g2, e2),Msecurity.g3))

T2 = (g3, e3)

The descriptions of g1, g2, st1, g3 are “System is depend-
able,” “System is safe,” “Argument over attributes,” “System
is secure,” respectively. The description of e1, e2 are both
“test results.” Figure 17 shows T1 and T2. In the current
implementation, away goals are represented by a green color,
and referred goals are by an orange color. Figure 18 shows

Figure 17. T1 and T2

the inter-module notation for M = {Mdependability,Msecurity}.
The small module node named “c” represents the contract
node. D-Case Editor can automatically produce inter-module

Figure 18. Inter-module notation for Mdependability and Msecurity

notations by analyzing the dependency among modules.

C. Representing Existing GSN Examples

As far as we know, our formal definition and implementa-
tion of all GSN and its pattern and module extensions are the
first ones for the GSN community standard [12]. Currently,
we are representing existing GSN examples in the literature
([13], [18], [41], [4], [7]). We mainly focus on [13] as it

seems to be the most recent catalogue and [41] as seems to
be the most collective catalogue.

We represent some GSN patterns using our framework,
implemented in D-Case Editor [1]. From the original GSN
patterns, the following normalizations are required (normal-
ization of GSN links is also done as in Figure 6) in a few
cases.

1) Pattern constructs splitting. Multiple pattern constructs
are defined in the same node. We normalize such cases
by adding a few nodes to separate multiple pattern
constructs.

2) Pattern merge splitting. As shown in Figure 19, mul-
tiple different pattern constructs are merged into the
same node. We normalize such cases by making a copy
of the merged sub tree, and split it to different subtrees.

�� �� ����

Figure 19. Merge splitting of GSN pattern constructs

Table I shows GSN patterns implemented in our frame-
work [1]. 1) and 2) in the “Normalization” column indicate
required changes mentioned above.

Table I
GSN PATTERN LIST [1]

Pattern Name Normalizations
High-Level Software Safety Argument [13]
Software Contribution Safety Argument [13] 1)
SSR Identification Software Safety Argument [13]
Hazardous Contribution Software Safety Argument [13]
SW Contribution Safety Argument with Grouping [13] 1), 2)
Hazard Avoidance Pattern [18]
Fault Free Software Pattern [18]
ALARP (As-Low-As-Reasonably-Practicable) Pattern [18] 2)
Component Contributions to System Hazards [41]
Hazardous SW Failure Mode Decomposition Pattern [41]
Hazardous Software Failure Mode Classification Pattern [41]
Software Argument Approach Pattern [41]
Absence of Omission Hazardous Failure Mode Pattern [41]
Absence of Commission Hazardous Failure Mode Pattern [41]
Absence of Early Hazardous Failure Mode Pattern [41]
Absence of Late Hazardous Failure Mode Pattern [41]
Absence of Value Hazardous Failure Mode Pattern [41]
Effects of Other Components Pattern [41]
Handling of Hardware/Other Component Failure Mode [41]
Handling of Software Failure Mode [41]
At Least As Safe Argument [4]
Requirements Breakdown Pattern [7] 1), 2)

We show two patterns from Table I as examples. Figure
20 is the “Hazard Avoidance Pattern” [18]. This pattern is
essentially the same as the pattern in Figure 11.

D-‐Case	 Editorで実装	

	
•  DEOSプロジェクトで開発したオープンソースの
GSNエディタ	

•  グラフィカル表記、パターン、モジュール	
– すべてのパターン構成を実装	
– モジュールも実装	

•  世界ではじめての実現	

既存パターン実装	

B. GSN Module Implementation

In our implementation, modules are implemented as
Eclipse files.

Let Mdependability = (T1, f1) and Msecurity = (T2, f2),
where

T1 = (g1, st1, ((g2, e2),Msecurity.g3))

T2 = (g3, e3)

The descriptions of g1, g2, st1, g3 are “System is depend-
able,” “System is safe,” “Argument over attributes,” “System
is secure,” respectively. The description of e1, e2 are both
“test results.” Figure 17 shows T1 and T2. In the current
implementation, away goals are represented by a green color,
and referred goals are by an orange color. Figure 18 shows

Figure 17. T1 and T2

the inter-module notation for M = {Mdependability,Msecurity}.
The small module node named “c” represents the contract
node. D-Case Editor can automatically produce inter-module

Figure 18. Inter-module notation for Mdependability and Msecurity

notations by analyzing the dependency among modules.

C. Representing Existing GSN Examples

As far as we know, our formal definition and implementa-
tion of all GSN and its pattern and module extensions are the
first ones for the GSN community standard [12]. Currently,
we are representing existing GSN examples in the literature
([13], [18], [41], [4], [7]). We mainly focus on [13] as it

seems to be the most recent catalogue and [41] as seems to
be the most collective catalogue.

We represent some GSN patterns using our framework,
implemented in D-Case Editor [1]. From the original GSN
patterns, the following normalizations are required (normal-
ization of GSN links is also done as in Figure 6) in a few
cases.

1) Pattern constructs splitting. Multiple pattern constructs
are defined in the same node. We normalize such cases
by adding a few nodes to separate multiple pattern
constructs.

2) Pattern merge splitting. As shown in Figure 19, mul-
tiple different pattern constructs are merged into the
same node. We normalize such cases by making a copy
of the merged sub tree, and split it to different subtrees.

�� �� ����

Figure 19. Merge splitting of GSN pattern constructs

Table I shows GSN patterns implemented in our frame-
work [1]. 1) and 2) in the “Normalization” column indicate
required changes mentioned above.

Table I
GSN PATTERN LIST [1]

Pattern Name Normalizations
High-Level Software Safety Argument [13]
Software Contribution Safety Argument [13] 1)
SSR Identification Software Safety Argument [13]
Hazardous Contribution Software Safety Argument [13]
SW Contribution Safety Argument with Grouping [13] 1), 2)
Hazard Avoidance Pattern [18]
Fault Free Software Pattern [18]
ALARP (As-Low-As-Reasonably-Practicable) Pattern [18] 2)
Component Contributions to System Hazards [41]
Hazardous SW Failure Mode Decomposition Pattern [41]
Hazardous Software Failure Mode Classification Pattern [41]
Software Argument Approach Pattern [41]
Absence of Omission Hazardous Failure Mode Pattern [41]
Absence of Commission Hazardous Failure Mode Pattern [41]
Absence of Early Hazardous Failure Mode Pattern [41]
Absence of Late Hazardous Failure Mode Pattern [41]
Absence of Value Hazardous Failure Mode Pattern [41]
Effects of Other Components Pattern [41]
Handling of Hardware/Other Component Failure Mode [41]
Handling of Software Failure Mode [41]
At Least As Safe Argument [4]
Requirements Breakdown Pattern [7] 1), 2)

We show two patterns from Table I as examples. Figure
20 is the “Hazard Avoidance Pattern” [18]. This pattern is
essentially the same as the pattern in Figure 11.

[8] Dependability Research Group, University of Virginia. http:
//dependability.cs.virginia.edu.

[9] European Organisation for the Safety of Air Navigation.
Safety case development manual, 2006. European Air Traffic
Management.

[10] Jane Fenn, Richard Hawkins, Phil Williams, and Tim Kelly.
Safety case composition using contracts -refinements based
on feedback from an industrial case study. In Proceedings of
15th Safety Critical Systems Symposium(SSS’07). Springer,
2007.

[11] Hajime Fujita, Yutaka Matsuno, Toshihiro Hanawa, Mitsuhisa
Sato, Shinpei Kato, and Yutaka Ishikawa. DS-Bench toolset:
Tools for dependability benchmarking with simulation and
assurance. In IEEE DSN, 2012. 8 pages.

[12] GSN contributors. GSN community standard version 1.0,
2011. http://www.goalstructuringnotation.info.

[13] R. Hawkins and T. Kelly. A software safety argument pattern
catalogue. Technical report, The University of York, 2013.
http://www-users.cs.york.ac.uk/⇠rhawkins/pubs.html.

[14] Richard Hawkins and Tim Kelly. A systematic approach for
developing software safety arguments. In In Proceedings of
the 27th International System Safety Conference, Huntsville,
AL, 2009.

[15] Charles C. Howell, Sofia Guerra, Shari Lawrence Pfleeger,
and Victoria Stavridou-Coleman, editors. Workshop on As-
surance Cases: Best Practices,Possible Obstacles, and Future
Opportunities, DSN 2004, 2004.

[16] ISO. ISO 26262 road vehicle - functional safety -, part 1 to
part 10, 2011.

[17] Tim Kelly. Modular certification to support open systems
dependability. In The 2nd International Workshop on Open
Systems Dependability (WOSD2012), 2012. http://www.
ubicg.ynu.ac.jp/wosd/wosd2012/.

[18] Tim Kelly and John McDermid. Safety case construction and
reuse using patterns. In In Proceedings of 16th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP’97), 1997.

[19] Tim Kelly and John McDermid. Safety case patterns - reusing
successful arguments. In IEE Colloquium on Understanding
Patterns and Their Application to System Engineering, 1998.

[20] Tim Kelly and Rob Weaver. The goal structuring notation - a
safety argument notation. In Proc. of the Dependable Systems
and Networks 2004, Workshop on Assurance Cases, 2004.

[21] N. Leveson. The use of safety cases in certification and
regulation. In ESD Working Paper Series, Boston: MIT, 2011.

[22] Yutaka Matsuno. D-Case Editor GitHub Repository. https:
//github.com/d-case/d-case editor.

[23] Yutaka Matsuno. D-Case Editor Homepage. http://www.jst.
go.jp/crest/crest-os/tech/D-CaseEditor/index-e.html.

[24] Yutaka Matsuno and Kenji Taguchi. Parameterised argument
structure for GSN patterns. In Proc. IEEE 11th International
Conference on Quality Software (QSIC 2011), pages 96–101,
2011.

[25] Yutaka Matsuno and Shuichiro Yamamoto. An implementa-
tion of gsn community standard. In Proc. of 1st International
Workshop on Assurance Cases for Software-intensive Systems
(ASSURE 2013), 2013.

[26] OMG System Assurance Task Force, 2012.
http://sysa.omg.org.

[27] OPENCOSS Project. Opencoss project web page, accessed
on Dec.2013. http://www.opencoss-project.eu.

[28] P.Esnard and A.Hunter. Elements of Argumentation. The MIT
Press, 2008.

[29] Phan Minh Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[30] Benjamin C. Pierce, editor. Types and Programming Lan-
guages. MIT Press, 2002.

[31] Railtrack. Yellow book 3, 2000. Engineering Safety Man-
agement Issue3, Vol. 1, Vol. 2.

[32] John Rushby. Formalism in safety cases. In Proc. 18th Safety-
Critial Systems Symposium, Bristol, UK, pages 3–17, 2010.

[33] John Rushby. Logic and epistemology in safety cases. In
SAFECOMP, pages 1–7, 2013.

[34] SAFE Project. Safe project web page, accessed on Dec.2013.
http://www.safe-project.eu.

[35] Makoto Takeyama. A brief introduc-
tion to D-Case/Agda *(draft ver. 0.2).
http://wiki.portal.chalmers.se/agda/uploads/D-Case-Agda.D-
Case-Agda/D-Case-Agda-HomePage-Data.html.

[36] Agda team. Agda wiki page.
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[37] The Health Foundation. Evidence: Using safety cases
in industry and healthcare. Technical report, 2012.
http://www.health.org.uk/publications/using-safety-cases-in-
industry-and-healthcare/.

[38] The Hon. Lord Cullen. The public inquiry into the piper alpha
disaster, vols. 1 and 2 (report to parliament by the secretary
of state for energy by command of her majesty), 1990.

[39] Mario Tokoro, editor. Open Systems Dependability: Depend-
ability Engineering for Ever-Changing Systems. CRC Press,
2012.

[40] S. Toulmin. The Use of Argument. Cambridge University
Press, 1958.

[41] Robert Andrew Weaver. The Safety of Software - Constructing
and Assuring Arguments. PhD thesis, Department of Com-
puter Science, University of York, 2003.

[8] Dependability Research Group, University of Virginia. http:
//dependability.cs.virginia.edu.

[9] European Organisation for the Safety of Air Navigation.
Safety case development manual, 2006. European Air Traffic
Management.

[10] Jane Fenn, Richard Hawkins, Phil Williams, and Tim Kelly.
Safety case composition using contracts -refinements based
on feedback from an industrial case study. In Proceedings of
15th Safety Critical Systems Symposium(SSS’07). Springer,
2007.

[11] Hajime Fujita, Yutaka Matsuno, Toshihiro Hanawa, Mitsuhisa
Sato, Shinpei Kato, and Yutaka Ishikawa. DS-Bench toolset:
Tools for dependability benchmarking with simulation and
assurance. In IEEE DSN, 2012. 8 pages.

[12] GSN contributors. GSN community standard version 1.0,
2011. http://www.goalstructuringnotation.info.

[13] R. Hawkins and T. Kelly. A software safety argument pattern
catalogue. Technical report, The University of York, 2013.
http://www-users.cs.york.ac.uk/⇠rhawkins/pubs.html.

[14] Richard Hawkins and Tim Kelly. A systematic approach for
developing software safety arguments. In In Proceedings of
the 27th International System Safety Conference, Huntsville,
AL, 2009.

[15] Charles C. Howell, Sofia Guerra, Shari Lawrence Pfleeger,
and Victoria Stavridou-Coleman, editors. Workshop on As-
surance Cases: Best Practices,Possible Obstacles, and Future
Opportunities, DSN 2004, 2004.

[16] ISO. ISO 26262 road vehicle - functional safety -, part 1 to
part 10, 2011.

[17] Tim Kelly. Modular certification to support open systems
dependability. In The 2nd International Workshop on Open
Systems Dependability (WOSD2012), 2012. http://www.
ubicg.ynu.ac.jp/wosd/wosd2012/.

[18] Tim Kelly and John McDermid. Safety case construction and
reuse using patterns. In In Proceedings of 16th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP’97), 1997.

[19] Tim Kelly and John McDermid. Safety case patterns - reusing
successful arguments. In IEE Colloquium on Understanding
Patterns and Their Application to System Engineering, 1998.

[20] Tim Kelly and Rob Weaver. The goal structuring notation - a
safety argument notation. In Proc. of the Dependable Systems
and Networks 2004, Workshop on Assurance Cases, 2004.

[21] N. Leveson. The use of safety cases in certification and
regulation. In ESD Working Paper Series, Boston: MIT, 2011.

[22] Yutaka Matsuno. D-Case Editor GitHub Repository. https:
//github.com/d-case/d-case editor.

[23] Yutaka Matsuno. D-Case Editor Homepage. http://www.jst.
go.jp/crest/crest-os/tech/D-CaseEditor/index-e.html.

[24] Yutaka Matsuno and Kenji Taguchi. Parameterised argument
structure for GSN patterns. In Proc. IEEE 11th International
Conference on Quality Software (QSIC 2011), pages 96–101,
2011.

[25] Yutaka Matsuno and Shuichiro Yamamoto. An implementa-
tion of gsn community standard. In Proc. of 1st International
Workshop on Assurance Cases for Software-intensive Systems
(ASSURE 2013), 2013.

[26] OMG System Assurance Task Force, 2012.
http://sysa.omg.org.

[27] OPENCOSS Project. Opencoss project web page, accessed
on Dec.2013. http://www.opencoss-project.eu.

[28] P.Esnard and A.Hunter. Elements of Argumentation. The MIT
Press, 2008.

[29] Phan Minh Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[30] Benjamin C. Pierce, editor. Types and Programming Lan-
guages. MIT Press, 2002.

[31] Railtrack. Yellow book 3, 2000. Engineering Safety Man-
agement Issue3, Vol. 1, Vol. 2.

[32] John Rushby. Formalism in safety cases. In Proc. 18th Safety-
Critial Systems Symposium, Bristol, UK, pages 3–17, 2010.

[33] John Rushby. Logic and epistemology in safety cases. In
SAFECOMP, pages 1–7, 2013.

[34] SAFE Project. Safe project web page, accessed on Dec.2013.
http://www.safe-project.eu.

[35] Makoto Takeyama. A brief introduc-
tion to D-Case/Agda *(draft ver. 0.2).
http://wiki.portal.chalmers.se/agda/uploads/D-Case-Agda.D-
Case-Agda/D-Case-Agda-HomePage-Data.html.

[36] Agda team. Agda wiki page.
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[37] The Health Foundation. Evidence: Using safety cases
in industry and healthcare. Technical report, 2012.
http://www.health.org.uk/publications/using-safety-cases-in-
industry-and-healthcare/.

[38] The Hon. Lord Cullen. The public inquiry into the piper alpha
disaster, vols. 1 and 2 (report to parliament by the secretary
of state for energy by command of her majesty), 1990.

[39] Mario Tokoro, editor. Open Systems Dependability: Depend-
ability Engineering for Ever-Changing Systems. CRC Press,
2012.

[40] S. Toulmin. The Use of Argument. Cambridge University
Press, 1958.

[41] Robert Andrew Weaver. The Safety of Software - Constructing
and Assuring Arguments. PhD thesis, Department of Com-
puter Science, University of York, 2003.

[8] Dependability Research Group, University of Virginia. http:
//dependability.cs.virginia.edu.

[9] European Organisation for the Safety of Air Navigation.
Safety case development manual, 2006. European Air Traffic
Management.

[10] Jane Fenn, Richard Hawkins, Phil Williams, and Tim Kelly.
Safety case composition using contracts -refinements based
on feedback from an industrial case study. In Proceedings of
15th Safety Critical Systems Symposium(SSS’07). Springer,
2007.

[11] Hajime Fujita, Yutaka Matsuno, Toshihiro Hanawa, Mitsuhisa
Sato, Shinpei Kato, and Yutaka Ishikawa. DS-Bench toolset:
Tools for dependability benchmarking with simulation and
assurance. In IEEE DSN, 2012. 8 pages.

[12] GSN contributors. GSN community standard version 1.0,
2011. http://www.goalstructuringnotation.info.

[13] R. Hawkins and T. Kelly. A software safety argument pattern
catalogue. Technical report, The University of York, 2013.
http://www-users.cs.york.ac.uk/⇠rhawkins/pubs.html.

[14] Richard Hawkins and Tim Kelly. A systematic approach for
developing software safety arguments. In In Proceedings of
the 27th International System Safety Conference, Huntsville,
AL, 2009.

[15] Charles C. Howell, Sofia Guerra, Shari Lawrence Pfleeger,
and Victoria Stavridou-Coleman, editors. Workshop on As-
surance Cases: Best Practices,Possible Obstacles, and Future
Opportunities, DSN 2004, 2004.

[16] ISO. ISO 26262 road vehicle - functional safety -, part 1 to
part 10, 2011.

[17] Tim Kelly. Modular certification to support open systems
dependability. In The 2nd International Workshop on Open
Systems Dependability (WOSD2012), 2012. http://www.
ubicg.ynu.ac.jp/wosd/wosd2012/.

[18] Tim Kelly and John McDermid. Safety case construction and
reuse using patterns. In In Proceedings of 16th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP’97), 1997.

[19] Tim Kelly and John McDermid. Safety case patterns - reusing
successful arguments. In IEE Colloquium on Understanding
Patterns and Their Application to System Engineering, 1998.

[20] Tim Kelly and Rob Weaver. The goal structuring notation - a
safety argument notation. In Proc. of the Dependable Systems
and Networks 2004, Workshop on Assurance Cases, 2004.

[21] N. Leveson. The use of safety cases in certification and
regulation. In ESD Working Paper Series, Boston: MIT, 2011.

[22] Yutaka Matsuno. D-Case Editor GitHub Repository. https:
//github.com/d-case/d-case editor.

[23] Yutaka Matsuno. D-Case Editor Homepage. http://www.jst.
go.jp/crest/crest-os/tech/D-CaseEditor/index-e.html.

[24] Yutaka Matsuno and Kenji Taguchi. Parameterised argument
structure for GSN patterns. In Proc. IEEE 11th International
Conference on Quality Software (QSIC 2011), pages 96–101,
2011.

[25] Yutaka Matsuno and Shuichiro Yamamoto. An implementa-
tion of gsn community standard. In Proc. of 1st International
Workshop on Assurance Cases for Software-intensive Systems
(ASSURE 2013), 2013.

[26] OMG System Assurance Task Force, 2012.
http://sysa.omg.org.

[27] OPENCOSS Project. Opencoss project web page, accessed
on Dec.2013. http://www.opencoss-project.eu.

[28] P.Esnard and A.Hunter. Elements of Argumentation. The MIT
Press, 2008.

[29] Phan Minh Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic program-
ming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[30] Benjamin C. Pierce, editor. Types and Programming Lan-
guages. MIT Press, 2002.

[31] Railtrack. Yellow book 3, 2000. Engineering Safety Man-
agement Issue3, Vol. 1, Vol. 2.

[32] John Rushby. Formalism in safety cases. In Proc. 18th Safety-
Critial Systems Symposium, Bristol, UK, pages 3–17, 2010.

[33] John Rushby. Logic and epistemology in safety cases. In
SAFECOMP, pages 1–7, 2013.

[34] SAFE Project. Safe project web page, accessed on Dec.2013.
http://www.safe-project.eu.

[35] Makoto Takeyama. A brief introduc-
tion to D-Case/Agda *(draft ver. 0.2).
http://wiki.portal.chalmers.se/agda/uploads/D-Case-Agda.D-
Case-Agda/D-Case-Agda-HomePage-Data.html.

[36] Agda team. Agda wiki page.
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[37] The Health Foundation. Evidence: Using safety cases
in industry and healthcare. Technical report, 2012.
http://www.health.org.uk/publications/using-safety-cases-in-
industry-and-healthcare/.

[38] The Hon. Lord Cullen. The public inquiry into the piper alpha
disaster, vols. 1 and 2 (report to parliament by the secretary
of state for energy by command of her majesty), 1990.

[39] Mario Tokoro, editor. Open Systems Dependability: Depend-
ability Engineering for Ever-Changing Systems. CRC Press,
2012.

[40] S. Toulmin. The Use of Argument. Cambridge University
Press, 1958.

[41] Robert Andrew Weaver. The Safety of Software - Constructing
and Assuring Arguments. PhD thesis, Department of Com-
puter Science, University of York, 2003.

be considered. It is difficult to determine one structure
from such “aspects.” Allowing multiple aspects would
be better than determining only one aspect. Defining
representation in our framework for such multiple as-
pects of assurance cases is worth studying.

V. RELATED WORK

The most closely related work is Denney and Pai’s study
[7]. We follow some parts of this paper such as the semantics
of choice and multiplicity. Their paper defines GSN as a
control flow graph, and introduces pattern constructs on
the graph. However, a few subtle issues arise due to the
un-structuredness of the control flow graph. For example,
patterns are required to satisfy a condition on the back-
edges. Also, their instantiation algorithm is sophisticated
but contains a few ad-hoc parts, and the notion of scope
of parameters has not been considered. In general, in the
programming languages field, structured representation of
a program is preferred to un-structured representation due
to the difficulties in the treatment of un-structured objects.
Our formalization is fairly structured: GSN is represented
by a simple tree structure, and only a structured simple loop
is allowed in a GSN pattern. Our formalism made several
simplifications. We believe that our limitation deserves the
benefit of structured-ness.

Takeyama has implemented D-Case/Agda [35], which is
an interactive GSN editing and verifying tool. Agda [36] is
a dependently typed functional programming language and
also a proof assistant. D-Case/Agda lets users to write GSN
in Agda. This enables more formal and consistent GSN to
be written and verified. Also, the definition of GSN in [35]
is structured. However, because D-Case/Agda uses Agda
directly, it is difficult for ordinary users to write GSN in D-
Case/Agda. Also, D-Case/Agda does not explicitly comply
with the GSN community standard. If a user wants to write
very rigorous GSN, however, then D-Case/Agda will be a
good alternative. How much formalism should assurance
case language have is an often discussed question in the
community.

Our work is based on Matsuno and Taguchi’s work [24]
and Matsuno and Yamamoto’s work [25]. Matsuno and
Taguchi [24] defined the basic GSN syntax (Definition 1),
defined a type system and scope for parameters, and did
a very experimental implementation of global parameters.
In [25], Matsuno and Yamamoto did an experimental im-
plementation of modules and local parameter without any
formal definition. In this paper, we have formally defined
the full syntax of patterns (Definition 2) (parameter, choice,
multiplicity, and loop constructs), pattern instantiation rela-
tion and the algorithm; the module system and inter-module
notation; and we have combined them into an assurance
case language. Furthermore, we have fully implemented the
language as an open source code.

There have been studies for verification of assurance cases
such as [32]. However, such studies use their own definition
of assurance cases representation. Defining an assurance
case language will be a base for such verification work,
as various type systems have been developed on functional
programming languages such as Standard ML and Haskell
based on � calculus, the basic model of functional pro-
gramming language. It is worth studying this to apply other
functional programming concepts such as polymorphism for
document generation for dependability assurance.

The argumentation framework introduced by Dung [29]
provides a formal (set theoretic) framework for argumen-
tative reasoning, and it has recently been widely used for
modeling various aspects of artificial intelligence. It would
be interesting to combine Dung’s framework and our frame-
work, as current assurance cases studies do not formally
incorporate rebuttal [40] and other important notions in
argumentation.

VI. CONCLUDING REMARKS

In this paper we have reported our formalization and
implementation of GSN and its extensions as an assurance
case language, using a functional programming framework.
Assurance cases are becoming important as a framework
for dependability assurance. Therefore, an assurance case
language should be defined and implemented in a formal
way. This will also help automatic verification of assurance
case documents, as noted in [33]. A next step is to show
that the assurance case language can be used for generating
documents for dependability assurance of a real system. By
using feedback from the use in real systems, the language
could be refined and made more practical. We would like to
report the results on this in the near future.

REFERENCES

[1] http://www.dcase.jp/pdf/patternLibrary.pdf.

[2] Eclipse Graphical Modeling Project Webpage. http://www.
eclipse.org/modeling/gmp/.

[3] Eclipse Project Webpage. http://www.eclipse.org.

[4] Robert Alexander, Tim Kelly, Zeshan Kurd, and John McDer-
mid. Safety cases for advanced control software: Safety case
patterns. Technical report, Department of Computer Science,
University of York, 2007.

[5] Peter Bishop and Robin Bloomfield. A methodology for
safety case development. In Safety-critical Systems Sympo-
sium (SSS 98), 1998.

[6] Robin Bloomfield and Peter Bishop. Safety and assurance
cases: Past, present and possible future - an adelard perspec-
tive. In Proceedings of the Eighteenth Safety-Critical Systems
Symposium, Bristol, UK, 2010.

[7] Ewen Denney and Ganesh Pai. A formal basis for safety case
patterns. In SAFECOMP, pages 21–32, 2013.

be considered. It is difficult to determine one structure
from such “aspects.” Allowing multiple aspects would
be better than determining only one aspect. Defining
representation in our framework for such multiple as-
pects of assurance cases is worth studying.

V. RELATED WORK

The most closely related work is Denney and Pai’s study
[7]. We follow some parts of this paper such as the semantics
of choice and multiplicity. Their paper defines GSN as a
control flow graph, and introduces pattern constructs on
the graph. However, a few subtle issues arise due to the
un-structuredness of the control flow graph. For example,
patterns are required to satisfy a condition on the back-
edges. Also, their instantiation algorithm is sophisticated
but contains a few ad-hoc parts, and the notion of scope
of parameters has not been considered. In general, in the
programming languages field, structured representation of
a program is preferred to un-structured representation due
to the difficulties in the treatment of un-structured objects.
Our formalization is fairly structured: GSN is represented
by a simple tree structure, and only a structured simple loop
is allowed in a GSN pattern. Our formalism made several
simplifications. We believe that our limitation deserves the
benefit of structured-ness.

Takeyama has implemented D-Case/Agda [35], which is
an interactive GSN editing and verifying tool. Agda [36] is
a dependently typed functional programming language and
also a proof assistant. D-Case/Agda lets users to write GSN
in Agda. This enables more formal and consistent GSN to
be written and verified. Also, the definition of GSN in [35]
is structured. However, because D-Case/Agda uses Agda
directly, it is difficult for ordinary users to write GSN in D-
Case/Agda. Also, D-Case/Agda does not explicitly comply
with the GSN community standard. If a user wants to write
very rigorous GSN, however, then D-Case/Agda will be a
good alternative. How much formalism should assurance
case language have is an often discussed question in the
community.

Our work is based on Matsuno and Taguchi’s work [24]
and Matsuno and Yamamoto’s work [25]. Matsuno and
Taguchi [24] defined the basic GSN syntax (Definition 1),
defined a type system and scope for parameters, and did
a very experimental implementation of global parameters.
In [25], Matsuno and Yamamoto did an experimental im-
plementation of modules and local parameter without any
formal definition. In this paper, we have formally defined
the full syntax of patterns (Definition 2) (parameter, choice,
multiplicity, and loop constructs), pattern instantiation rela-
tion and the algorithm; the module system and inter-module
notation; and we have combined them into an assurance
case language. Furthermore, we have fully implemented the
language as an open source code.

There have been studies for verification of assurance cases
such as [32]. However, such studies use their own definition
of assurance cases representation. Defining an assurance
case language will be a base for such verification work,
as various type systems have been developed on functional
programming languages such as Standard ML and Haskell
based on � calculus, the basic model of functional pro-
gramming language. It is worth studying this to apply other
functional programming concepts such as polymorphism for
document generation for dependability assurance.

The argumentation framework introduced by Dung [29]
provides a formal (set theoretic) framework for argumen-
tative reasoning, and it has recently been widely used for
modeling various aspects of artificial intelligence. It would
be interesting to combine Dung’s framework and our frame-
work, as current assurance cases studies do not formally
incorporate rebuttal [40] and other important notions in
argumentation.

VI. CONCLUDING REMARKS

In this paper we have reported our formalization and
implementation of GSN and its extensions as an assurance
case language, using a functional programming framework.
Assurance cases are becoming important as a framework
for dependability assurance. Therefore, an assurance case
language should be defined and implemented in a formal
way. This will also help automatic verification of assurance
case documents, as noted in [33]. A next step is to show
that the assurance case language can be used for generating
documents for dependability assurance of a real system. By
using feedback from the use in real systems, the language
could be refined and made more practical. We would like to
report the results on this in the near future.

REFERENCES

[1] http://www.dcase.jp/pdf/patternLibrary.pdf.

[2] Eclipse Graphical Modeling Project Webpage. http://www.
eclipse.org/modeling/gmp/.

[3] Eclipse Project Webpage. http://www.eclipse.org.

[4] Robert Alexander, Tim Kelly, Zeshan Kurd, and John McDer-
mid. Safety cases for advanced control software: Safety case
patterns. Technical report, Department of Computer Science,
University of York, 2007.

[5] Peter Bishop and Robin Bloomfield. A methodology for
safety case development. In Safety-critical Systems Sympo-
sium (SSS 98), 1998.

[6] Robin Bloomfield and Peter Bishop. Safety and assurance
cases: Past, present and possible future - an adelard perspec-
tive. In Proceedings of the Eighteenth Safety-Critical Systems
Symposium, Bristol, UK, 2010.

[7] Ewen Denney and Ganesh Pai. A formal basis for safety case
patterns. In SAFECOMP, pages 21–32, 2013.

多少の変更のみで、	
既存のGSNパターンを	
実装できた	

High-‐Level	 Sobware	 Safety	 Argument	
Parern	

A	 Sobware	 Safety	 Argument	 Parern	 Catalogue	
R.Hawkins	 and	 T.Kelly	

hrp://www.cs.york.ac.uk/bpdir/reports/2013/YCS/482/
YCS-‐2013-‐482.pdf	 	

	

Sobware	 ContribuHon	 Safety	 Argument	
Parern	 	

	 	
A	 Sobware	 Safety	 Argument	 Parern	 Catalogue	

R.Hawkins	 and	 T.Kelly	
hrp://www.cs.york.ac.uk/bpdir/reports/2013/YCS/482/

YCS-‐2013-‐482.pdf	 	
	

SSR	 IdenHficaHon	 Sobware	 Safety	
Argument	 Parern	 	

	
	 	

A	 Sobware	 Safety	 Argument	 Parern	 Catalogue	
R.Hawkins	 and	 T.Kelly	

hrp://www.cs.york.ac.uk/bpdir/reports/2013/YCS/482/
YCS-‐2013-‐482.pdf	 	

	

Hazardous	 ContribuHon	 Sobware	 Safety	 Argument	 Parern	 	 	
A	 Sobware	 Safety	 Argument	 Parern	 Catalogue	

R.Hawkins	 and	 T.Kelly	
hrp://www.cs.york.ac.uk/bpdir/reports/2013/YCS/482/YCS-‐2013-‐482.pdf	 	

	

Sobware	 ContribuHon	 Safety	 Argument	
Parern	 with	 Grouping	 	 	

	 	
A	 Sobware	 Safety	 Argument	 Parern	 Catalogue	

R.Hawkins	 and	 T.Kelly	
hrp://www.cs.york.ac.uk/bpdir/reports/2013/YCS/482/

YCS-‐2013-‐482.pdf	 	
	

Hazard	 Avoidance	 Parern	
Tim	 Kelly	 and	 John	 McDermid.	 Safety	 case	 construcHon	 and	 reuse	 using	 parerns.	 In	 In	 Proceedings	 of	 16th	

InternaHonal	 Conference	 on	 Computer	 Safety,	 Reliability	 and	 Security	 (SAFECOMP’97),	 1997.	 	

システムの名前	
がパラメータに	
なっている（X）	

システムXで	
識別	
されたすべての	
ハザードY	
に対処できている	
ことを議論する	

Fault	 Free	 Sobware	 Parern	 	
Tim	 Kelly	 and	 John	 McDermid.	 Safety	 case	 construcHon	 and	 reuse	 using	 parerns.	 In	 In	 Proceedings	 of	 16th	

InternaHonal	 Conference	 on	 Computer	 Safety,	 Reliability	 and	 Security	 (SAFECOMP’97),	 1997.	 	

ALARP	 (As-‐Low-‐As-‐Reasonably-‐PracHcable)	 Parern	
Tim	 Kelly	 and	 John	 McDermid.	 Safety	 case	 construcHon	 and	 reuse	 using	 parerns.	 In	 In	
Proceedings	 of	 16th	 InternaHonal	 Conference	 on	 Computer	 Safety,	 Reliability	 and	

Security	 (SAFECOMP’97),	 1997.	 	
	 	

Component	 ContribuHons	 to	 System	 Hazards	 	
	 	

Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	

hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Hazardous	 Sobware	 Failure	 Mode	 DecomposiHon	 Parern	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 ConstrucHng	 and	 Assuring	 Arguments	

Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Hazardous	 Sobware	 Failure	 Mode	 ClassificaHon	 Parern	 	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 ConstrucHng	 and	 Assuring	 Arguments	

Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Sobware	 Argument	 Approach	 Parern	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 ConstrucHng	 and	 Assuring	 Arguments	

Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Absence	 of	 Omission	 	
Hazardous	 Failure	 Mode	 Parern	 	
	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Absence	 of	 Commission	 	
Hazardous	 Failure	 Mode	 Parern	 	 	 	
Robert	 Andrew	 Weaver,	 	
The	 Safety	 of	 Sobware	 –	 ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Absence	 of	 Early	 Hazardous	 	
Failure	 Mode	 Parern	 	 	 	
	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Absence	 of	 Late	 Hazardous	 Failure	 	
Mode	 Parern	 	 	 	 	
	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Absence	 of	 Value	 Hazardous	 	
Failure	 Mode	 Parern	 	 	 	 	 	
	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobware	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Effects	 of	 Other	 Components	 Parern	 	 	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobwae	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

	
Handling	 of	 Hardware/Other	 Component	 Failure	 Mode	 	
	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobwae	 –	 ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports/2004/YCST/01/YCST-‐2004-‐01.pdf	

Handling	 of	 Sobware	 Failure	 Mode	 	 	
Robert	 Andrew	 Weaver,	 The	 Safety	 of	 Sobwae	 –	 	
ConstrucHng	 and	 Assuring	 Arguments	
Ph.D.	 Thesis,	 University	 of	 York,	 2004	 	
hrp://www.cs.york.ac.uk/bpdir/reports	
/2004/YCST/01/YCST-‐2004-‐01.pdf	

	
At	 Least	 As	 Safe	 Argument	 	

	
Robert	 Alexander,	 Tim	 Kelly,	 Zeshan	 Kurd,	 and	 John	 McDermid.	 Safety	 cases	 for	 advanced	 control	 sobware:	 Safety	 case	

parerns.	 Technical	 report,	 Department	 of	 Computer	 Science,	 University	 of	 York,	 2007.	 	

既存の	
システムは	
安全	

既存の	
システムと	
十分に類似	
している	

既存のシステムの	
安全性記録に照らし合わせて、	
対象システムは十分に、もしくは	
それ以上に安全要求を満たしている	

既存システムと	
従来システム名	
がパラメータ化	
されている	

システムX	
は十分に	
安全である	

	
	

Requirements	 Breakdown	 Parern	 in	
Ewen	 Denney	 and	 Ganesh	 Pai.	 A	 formal	 basis	 for	 safety	 case	 parerns.	 In	

SAFECOMP,	 pages	 21–32,	 2013.	 	
	

まとめ	

•  アシュアランスケース言語を形式的に定義、	
実装、オープンソース公開　www.dcase.jp	

•  世界ではじめてGSNパターンをツールから	
利用可能にした	
– 従来は論文中で参照されていたのみ	

•  今後の課題	
– ツール利用によるD-‐Caseパターン作製、共有、コスト

低減の効果、有効性測定	
– モジュール利用によって、スケーラビリティがどの程

度克服されるか	

